
Security
CS499/579 :: Empirical Computer Security

Zane Ma (he/him/his)
2024.10.07

Security ▪︎ Zane Ma

Topics
• Trusting Trust - why is security hard?

• Case study: xz utils

• Authentication, Authorization, Auditing

2

Security ▪︎ Zane Ma

Ken Thompson

3

Co-creator of UNIX

and Golang

Security ▪︎ Zane Ma

1010101000001111001
0001011111000010111
1011100001010000111

Reflections on Trusting Trust

4

1010101000001111001
0001011111000010111
1011100001010000111

void main() {
print(“Hello”);

}

hello.c hello.exe

Human-readable code Machine codeCompiler

compiles

into

How to detect?

Look at compiler source code!

Security ▪︎ Zane Ma

Reflections on Trusting Trust

5

• Pattern 1 = login operation that becomes
insecure when compiled with bug

• Pattern 2 = compiler; anytime this compiler is
compiling a future version of the compiler, it will
inject the two matching patterns on the left

• Compiler binary contains both pattern 1 and
pattern 2 bugs, in perpetuity, even if we remove
them from the compiler source code!

• tl;dr - self-perpetuating vulnerability-injecting
compiler that only exists in the machine code
binary and cannot be seen from source

Security ▪︎ Zane Ma

xz utils backdoor

6

• xz = open-source suite of compression software included in nearly all Linux/
Unix-like systems; used by popular software, including OpenSSH

• February 2024: malicious code released, but not obvious in main open source
code! Inspecting git repository does not reveal maliciousness

• Malicious payload hidden in benign-looking test binary (e.g., random data
file to test compression algorithm on)

• Non-reproducible build: Released software (tar) not fully derived from git
repository; stealthy addition of injector script

• Malicious code is not linked until build time, on third-party machines

Security ▪︎ Zane Ma

xz utils backdoor

7

https://cs4157.github.io/www/2024-1/lect/21-xz-utils.pdf

Security ▪︎ Zane Ma

xz utils backdoor

8

• A determined, capable adversary

• 2.5-year-long OS contribution history

• “Multi-actor” social engineering campaign

• Technically advanced stealthy attack

• Supply-chain attack would have provided
remote root access to millions of internet hosts,
fortunately discovered March 2024 before
deployment in mainstream systems

Security ▪︎ Zane Ma

Who is Jia Tan?

9

• Active open-source contributor, began contributing to xz in 2021

• Hundreds of commits to the library over the course of 2-3 years

• Ultimately promoted to co-maintainer of xz utils in 2024

• Once privileged, they added two “test” files to the xz repo:

• bad-3-corrupt_lzma2.xz

• good-large_compressed.lzma

• Also added malicious payload injector line to released build scripts

Security ▪︎ Zane Ma

Who is Jia Tan?

10

Security ▪︎ Zane Ma

xz utils - Social Engineering

11

• Maintained by Lasse Collin for many years - solitary and thankless job

• “Your efforts are good but based on the slow release schedule it will
unfortunatly be years until the community actually gets this quality of life
feature.”

• “Progress will not happen until there is new maintainer[…] The current
maintainer lost interest or doesn't care to maintain anymore. It is sad to see
for a repo like this.”

• Many other comments from three accounts (Jigar Kumar, Dennis Ens, Hans
Jansen) to 1) pressure Lasse hand over control / make Jia Tian an xz
maintainer, 2) update OS versions of xz-utils with the newest/malicious
version

Security ▪︎ Zane Ma

xz utils - lucky discovery

12

• Andres Freund - Microsoft PostgreSQL dev

• Found odd performance behavior on Debian test release

• Noticed failed logins taking a long time…should be fast!

• “With the backdoored liblzma installed, logins via ssh become a lot slower.
[...] before: real 0m0.299s [...] after: real 0m0.807s”

• Malicious code released Feb 2024 —> discovered Mar 2024; if no latency
differences, it could be deployed and undiscovered even today!

Security ▪︎ Zane Ma

xz utils - Takeaways?

13

• Specific technical exploit considerations: reduce dynamic linking dependencies
(i.e., sshd shouldn’t link liblzma), reproducible builds - ensure released code
(tarballs) match repository source

• Supply chain attacks are challenging problem; problematic for critical
infrastructure to depend on anonymous developers

• Critical infrastructure relies on the same (large) set of open-source software

• Software Bill of Materials (SBOM) - list of all software dependencies; good
starting point but difficult to ensure accuracy, mostly a forensic capability

• xz utils is not the first, nor last supply chain attack - next one will avoid
noticeable latency issues

Security ▪︎ Zane Ma

Reflections on Trusting Trust

14

• Pattern 1 = login operation that becomes
insecure when compiled with bug

• Pattern 2 = compiler; anytime this compiler is
compiling a future version of the compiler, it will
inject the two matching patterns on the left

• Compiler binary contains both pattern 1 and
pattern 2 bugs, in perpetuity, even if we remove
them from the compiler source code!

• tl;dr - self-perpetuating vulnerability-injecting
compiler that only exists in the machine code
binary and cannot be seen from source

Security ▪︎ Zane Ma

Reflections on Trusting Trust

15

• Can’t trust compiler —> verify correctness of compiler beforehand or write your
own from machine code

• Can’t trust processor to execute code properly —> test hardware / drivers
beforehand or create your own processor, and so on…

• Can’t trust anyone implies…do everything yourself, from scratch.

Welcome + Administrivia ▪︎ Zane Ma

BLOOKET
BREAK

16

Security ▪︎ Zane Ma

Less daunting alternative?

17

• Accept the impossibility of perfect, guaranteed security - rely on trust!

• This is how modern society works

• Trust government regulation - food from the store is safe to eat

• Trust societal norms / laws - drivers won’t act erratically

• Trust friends, family - help you do things

Trust is imperfect - no guarantees, but it’s more realistic than the alternative.

Security ▪︎ Zane Ma

Trust enforcement

18

• Trust X to do A. If they don’t, you can:

1. Choose not to trust X in the future (e.g., don’t purchase from brand X,
which produces low quality items)

2. And/or punish X (e.g., going to jail for breaking the law)

• Trust on the internet is difficult because:

• Inadequate authentication - can’t determine who to trust / distrust

• Insufficient regulation / laws - few repercussions for trust-breakers

• Implicit trust - cannot automatically act on violations of trust

Security ▪︎ Zane Ma

Inadequate authentication

19

• Scenario: someone hacks your web server / phishes you / installs malware

• IP-based network logs are insufficient to track down who did it

• Tor network, VPNs, bulletproof hosting clouds don’t track humans

• Can’t avoid the same actor next time, too easy to spin up an infinite
number of new “network identity” - website names, IPs, phishing sites

• Scenario: you get scammed and your Bitcoin wallet is drained.

• Even though all bitcoin transactions are “authenticated” with a
cryptographic key pair, any one can spin up any number of Bitcoin
identities and mix / wash the stolen funds

Security ▪︎ Zane Ma

Insufficient regulation

20

• For example, no laws against online abuse / harassment

• The internet makes crime/abuse scalable, different enforcement
considerations

• Even when there are laws, they are often just a “slap on the wrist”

• Thousands of customer’s raw DNA data exposed
to the public —> $75K fine

• The European Union has been leading the way:
e.g., General Data Protection Regulation

Security ▪︎ Zane Ma

Implicit trust

21

• Even when authentication and legal consequences exist, we don’t explicitly
track who we are trusting for what!

• Supply-chain security

• Both hardware and software supply chain

• Provenance: a record of ownership, used as a guide to authenticity or quality

• System provenance: trace which processes communicate with each other,
and what resources they access

• Network provenance: trace which network hosts communicate, and what
data they transmit to each other

Security ▪︎ Zane Ma

What about privacy?

22

• Crucial aspect; should be decided by society + legislation, not companies

• Privacy vs authentication is a nuanced spectrum

• Potential starting point - digital equivalent of non-digital societal norms?

• Privacy vs accountability tradeoff: e.g., cash usage in the US; Tor darkweb

• Challenge: privacy benefits individuals, privacy abuse can harm many

Research project: characterize + quantify this tradeoff

Security ▪︎ Zane Ma

AAA: Authentication, Authorization, Auditing

23

• Butler Lampson (1992 Turing Award winner)

• Premise = some system with sensitive / valuable resources; for example,
website with user health info, power generator, memory of a VM / process

• Authentication: who is trying to access the resource

• Authorization: what the authenticated entity is allowed to do (read, modify)

• Auditing: a log of “Who did what when?” - for retroactive detection / forensics

Security ▪︎ Zane Ma

Why don’t we have “real” security?
• Systems are complicated, so they have bugs
• People don’t buy it

• Danger is small, so it’s OK to buy features instead
• Security is expensive

• Configuring security is a lot of work
• Secure systems do less because they’re older

• Security is a pain
• It stops you from doing things
• Users have to authenticate themselves

• Goals are unrealistic, ignoring technical feasibility and user behavior

24

Butler Lampson. “Perspectives on Security.” SOSP, 2015.

Security ▪︎ Zane Ma

TODOs for you

25

First paper reading + questions will be due by 6PM Tuesday, October 8th.

Get the creative juices flowing! Project proposals (1-page max, at least 10pt
font, single spaced) due 9PM Wednesday, October 16th.

If you feel stuck, please come discuss ideas at office hours, or schedule
time to chat with me

I will read all the proposals and meet with all teams for 30 minutes on
Monday, October 21 - please sign up for a meeting! Link on website

