Security

CS499/579 :: Empirical Computer Security

Zane Ma (he/him/his)
2023.10.09

Topics

e Trusting Trust

* Authentication, Authorization, Auditing
* Threat Modeling

» Offensive / Defensive Security

i

it Oregon State
Es

Security = Zane Ma

Ken Thompson

@amed PDP-7 operating sy@ 1969

, - Open source
: Uni
1971 t0 1973 s ersion] to ~_ D Mixed/shared source 1971 10 1973
1974 to 1975 /‘Versigrrwng to 6 PWB/Unix D Closed source 1974 10 1975
1978 1978
BSD
. A Uni
1979 SR @D — 1979
AR Unix/32V :
1980 f 1980
3 OBtSD4 1 i
1982 I 1982
Xenix
1983 5 BSD 4.2 B ;io 1083
: ltol.l J Een&;l
1984 SCO Xenix 7 g 1084
1985 version 8 — It v . (7SCO Xenix S 1985
1986 Unix-like systems : [+ { BSD 4.3 o 1.0 RiEHE R3 HP-UX 1986
: SCO Xenix 1.0tol.2
1987 | / . Secifhei \ /386 : 1987
1988 (last.versions~ ~BSp 4.3 - A, : System P 1988
Bell Labs) Ll SCO Xenix R : 1989
1989 BSD Net/1 /386
1990 414 1990
1991 Linux 0.0.1 BSD Net/2 1991
NexTSTEP/ S86850
1992 OPENSTEP : HP-UX 1992
1.0t0 4.0 NetBSD 6to 1l
Linux : BSD 0.8to 1.0 :
1993 0.99to0 1.2 | 4.4ite R Pcare 1993
1994 Lite Release 2 - (sll:.ezr;\V 1994
1995 NetBSD OpenBSsD 1995
- 11012] 10022 sreesy Solaris 1006
1997
1997 NetBSD 1.3 1 o~
1998 1998
OpenServer
1999 Mgc 0S X 5_&5 to 5.0.7 1999
2000 erver 2000
. AlX .
2001 to 2004 3.0-7.3 : 20012::)52004
2005
1
2006 to 2007 2006 to 2007
Uni);Ware I
Linux X Solaris
2 2.0to 6.x (Sy%tse)mv 10 2008
2009 OpenBSD 2009
; Maé:sOS X FreeBSD NetBSD 23to 7.1 HP-UX
2010 : MEC0S 3.3-13.x 1.4to0 9.3 OpenServer 11t 2010
o-creator of UNIX e | e Cregepry o ' ot
2011 3.1.0t0 3.4.0 |, Parun P X \ |
2012 t0 2014 i B - - _\ i gt i g 201210 2014
)
TR 2015 to 2016
and Golan R R PR35 5
2017 ELAtU 2017
2018 2018
2019 to 2022 2019 to 2022

Security = Zane Ma T Oregon State

hello.c

void main() {
print(“Hello”);

}

Human-readable code

Reflections on Trusting Trust

char *s;
{
//compile things
}
compiles
into

1010101000001111001
0001011111000010111
1011100001010000111

Compiler

Security = Zane Ma

hello.exe

1010101000001111001

0001011111000010111
1011100001010000111

Machine code

o
{4 Oregon State
B

Reflections on Trusting Trust

char =s;

{

if(match(s, “pattern”)) {
compile(“bug”); How to detect?

retumn; Look at compiler source code!

compiles
Into

hello.c hello.exe

void main() { 1010101000001111001

1010101000001111001

0001011111000010111
1011100001010000111

print("Hello”); 0001011111000010111
} 1011100001010000111

Human-readable code Compiler Machine code

NS
Security = Zane Ma OregonState

Reflections on Trusting Trust

* Pattern 1 =login operation that becomes

;:har *S; iInsecure when compiled with bug

if tch ’ “natt 1"
(matc fom‘;‘,e‘:fgugﬁf); » Pattern 2 = compiler; anytime this compiler is

return; compiling a future version of the compiler, it will

Kmatchis. “pattem 2°) ¢ inject the two matching patterns on the left

ile ("bug 27); . . .
f&'Sﬁl;e‘ "= Compiler binary contains both pattern 1 and

pattern 2 bugs, in perpetuity, even if we remove
them from the compiler source code!

* tl;dr - self-perpetuating vulnerability-injecting
compiler that only exists in the machine code
binary and cannot be seen from source

i

) Oregon State

Security = Zane Ma @*

Reflections on Trusting Trust

MORAL

The moral is obvious. You can’t trust code that you did
not totally create yourself. (Especially code from com-
panies that employ people like me.) No amount of
source-level verification or scrutiny will protect you |

 Can’t trust compiler —> verify correctness of compiler beforehand or write your
own from machine code

« Can’t trust processor to execute code properly —> test hardware / drivers
beforehand or create your own processor, and so on...

 Can’t trust anyone implies...do everything yourself, from scratch.

i

) Oregon State

Security = Zane Ma Bls

Less daunting alternative?

* Accept the impossibility of perfect, guaranteed security - rely on trust!
* This Is how modern society works

* Trust government regulation - food from the store is safe to eat

* Trust societal norms / laws - drivers won't act erratically

* Trust friends, family - help you do things

Trust is imperfect - no guarantees, but it’'s more realistic than the alternative.

i

it Oregon State
Ets

Security = Zane Ma

Trust enforcement

* Trust X to do A. If they don’t, you can:

1. Choose not to trust X in the future (e.g., don’t purchase from brand X,
which produces low quality items)

2. And/or punish X (e.g., going to jail for breaking the law)
* Trust on the internet is difficult because:
* |nadequate authentication - can’t determine who to trust / distrust
* |nsufficient regulation / laws - few repercussions for trust-breakers

* |Implicit trust - cannot automatically act on violations of trust

i

it Oregon State
Ets

Security = Zane Ma

Inadequate authentication

e Scenario: someone hacks your web server / phishes you / installs malware
* |P-based network logs are insufficient to track down who did it
* Tor network, bulletproof hosting clouds don’t track humans

 Can’t avoid the same actor next time, too easy to spin up an infinite
number of new “network identity” - website names, IPs, phishing sites

* Scenario: you get scammed and your Bitcoin wallet is drained.

* Even though all bitcoin transactions are “authenticated” with a
cryptographic key pair, any one can spin up any number of Bitcoin
identities and mix / wash the stolen funds

i

-+ Oregon State
@*@ 8

Security = Zane Ma

Insufficient regulation

* For example, no laws against online abuse / harassment

 The internet makes crime/abuse scalable, different enforcement
considerations

 Even when there are laws, they are often just a “slap on the wrist”

* Thousands of customer’s raw DNA data exposed
to the public —> $75K fine

UNIQUE

 The European Union has been leading the way:

U
LIKE YO -4 e.g., General Data Protection Regulation

et

Test
Health *

o
{4 Oregon State
B

Security = Zane Ma

Implicit trust

 Even when authentication and legal consequences exist, we don’t explicitly
track who we are trusting for what!

» Supply-chain security
* Both hardware and software supply chain
* Provenance: a record of ownership, used as a guide to authenticity or quality

e System provenance: trace which processes communicate with each other,
and what resources they access

* Network provenance: trace which network hosts communicate, and what
data they transmit to each other

) Oregon State

Security = Zane Ma

What about privacy?

* Crucial aspect; should be decided by society + legislation, not companies
* Privacy vs authentication is a huanced spectrum

* Potential starting point - digital equivalent of non-digital societal norms?

* Privacy vs accountability tradeoff: e.g., cash usage in the US; Tor darkweb

* Challenge: privacy benefits individuals, privacy abuse can harm many

Research project: characterize + quantify this tradeoff

i

it Oregon State
Ets

Security = Zane Ma

AAA: Authentication, Authorization, Auditing

e Butler Lampson (1992 Turing Award winner)

* Premise = some system with sensitive / valuable resources; for example,
website with user health info, power generator, memory of a VM / process

* Authentication: who is trying to access the resource
* Authorization: what the authenticated entity is allowed to do (read, modity)

* Auditing: a log of “Who did what when?” - for retroactive detection / forensics

| 00 Stat
Security = Zane Ma regon State

Why don’t we have “real” security?

* Systems are complicated, so they have bugs
* People don't buy it
* Danger is small, so it’'s OK to buy features instead
e Security is expensive
» Configuring security is a lot of work
» Secure systems do less because they’re older
e Security is a pain
* |t stops you from doing things
* Users have to authenticate themselves
* (Goals are unrealistic, ignoring technical feasibility and user behavior

Butler Lampson. “Perspectives on Security.” SOSP, 2015.

i

it Oregon State
Ets

Security = Zane Ma

TODOs for you

First paper reading + questions will be due by 6PM Tuesday, October 10th.

Get the creative juices flowing! Project proposals (1-page max, at least 10pt
font, single spaced) due 9PM Wednesday, October 18th.

If you feel stuck, please come discuss ideas at office hours, or schedule
time to chat with me

AE

Security = Zane Ma)i Oregon State
Bl

